
Regular expressions into finite automata by Anne Brüggemann-Klein

LATIN 1992, LNCS 583, 87—98, 1992.

Imre Simon Test-of-Time Award 2020

Document grammars in SGML and XML are built from deterministic regular expressions.

Determinism is defined operationally:

A [symbol] that occurs in the [word] of a [regular expression's language] must be able to
satisfy only one occurrence of that symbol in the [expression] without looking ahead in the
[word].

Condition can be formalised with the help of the position automaton (Sakarovitch) that was
originally discovered by Glushkov in 1961 – an NFA that naturally represents a regular expression.

Expression E = (a* b*)

Position automaton ME

2Imre Simon Test-of-Time Award 2020

Context

a

b

Document grammars in SGML and XML are built from deterministic regular expressions.

Determinism is defined operationally:

A [symbol] that occurs in the [word] of a [regular expression's language] must be able to
satisfy only one occurrence of that symbol in the [expression] without looking ahead in the
[word].

Condition can be formalised with the help of position automata (Sakarovitch) that were originally
discovered by Glushkov in 1961 – an NFA that naturally represents a regular expression.

Expression E = (a* b*)

Position automaton ME

3Imre Simon Test-of-Time Award 2020

Context

b

a

a

b

Document grammars in SGML and XML are built from deterministic regular expressions.

Determinism is defined operationally:

A [symbol] that occurs in the [word] of a [regular expression's language] must be able to
satisfy only one occurrence of that symbol in the [expression] without looking ahead in the
[word].

Condition can be formalised with the help of position automata (Sakarovitch) that were originally
discovered by Glushkov in 1961 – an NFA that naturally represents a regular expression.

Expression E = (a* b*)

Position automaton ME

Definition
E deterministic ⇔ ME deterministic

4Imre Simon Test-of-Time Award 2020

Context

b

a

a

b

b

Expression E = (a* b*)

Position automaton ME

Goal output-sensitive construction (touch each transition once)

Problem going from ME to ME* means to add feedback
transitions that might be
already present

5Imre Simon Test-of-Time Award 2020

Construction time for position automaton

b

a

a

b

b

Expression E* = (a* b*)*

Position automaton ME*

Goal output-sensitive construction (touch each transition once)

Problem going from ME to ME* means to add feedback
transitions that might be
already present

Solution
Transform E into star normal form E⦁ so that the position automata ME and ME⦁ are identical and that
all feedback transitions that are introduced during the constraction of ME⦁ are new. BTW, the star
normal form of (a* b*)* is (a+b)*

6Imre Simon Test-of-Time Award 2020

Construction time for position automaton

b

a

a

b

b

a

Theorem

• The position automaton for any regular expression can be constructed in time that is quadratic in
the size of the expression and proportional to the size of the automaton (output-sensitive).

• We can test in linear time if a regular expression is deterministic in the sense of SGML

Further results (with Derick Wood)

• Characterize the regular languages that can be represented by deterministic expressions. For
example, the language of (a+b)* a (a+b) is NOT one of them.

• Extend the work to the full set of operators that SGML expressions support, among them the shuffle
operator &.

These results are cited as related work in the W3C recommendation for XML, the Extensible Markup
Language, a sequel of SGML that was designed for use on the web. They provide a level of
mathematical rigour in terms of concepts and reasoning to W3C standards that is not present in all
W3C recommendations and that the document engineering community appreciates.

7Imre Simon Test-of-Time Award 2020

Results

8Thank you for this incredible honor!

