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Document grammars in SGML and XML are built from deterministic regular expressions.

Determinism is defined operationally:

A [symbol] that occurs in the [word] of a [regular expression's language] must be able to 
satisfy only one occurrence of that symbol in the [expression] without looking ahead in the 
[word].

Condition can be formalised with the help of the position automaton (Sakarovitch) that was
originally discovered by Glushkov in 1961 – an NFA that naturally represents a regular expression.

Expression E = (a* b*)

Position automaton ME
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Document grammars in SGML and XML are built from deterministic regular expressions.

Determinism is defined operationally:

A [symbol] that occurs in the [word] of a [regular expression's language] must be able to 
satisfy only one occurrence of that symbol in the [expression] without looking ahead in the 
[word].

Condition can be formalised with the help of position automata (Sakarovitch) that were originally 
discovered by Glushkov in 1961 – an NFA that naturally represents a regular expression.

Expression E = (a* b*)

Position automaton ME

Definition
E deterministic ⇔ ME deterministic
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Expression E = (a* b*)

Position automaton ME

Goal output-sensitive construction (touch each transition once)

Problem going from ME to ME*                                           means to add feedback
transitions that might be 
already present
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Expression E* = (a* b*)*

Position automaton ME*

Goal output-sensitive construction (touch each transition once)

Problem going from ME to ME*                                           means to add feedback
transitions that might be 
already present

Solution
Transform E into star normal form E⦁ so that the position automata ME and ME⦁ are identical and that 
all feedback transitions that are introduced during the constraction of ME⦁ are new. BTW, the star 
normal form of (a* b*)* is (a+b)*
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Theorem

• The position automaton for any regular expression can be constructed in time that is quadratic in 
the size of the expression and proportional to the size of the automaton (output-sensitive).

• We can test in linear time if a regular expression is deterministic in the sense of SGML

Further results (with Derick Wood)

• Characterize the regular languages that can be represented by deterministic expressions. For 
example, the language of (a+b)* a (a+b) is NOT one of them.

• Extend the work to the full set of operators that SGML expressions support, among them the shuffle 
operator &.

These results are cited as related work in the W3C recommendation for XML, the Extensible Markup 
Language, a sequel of SGML that was designed for use on the web. They provide a level of 
mathematical rigour in terms of concepts and reasoning to W3C standards that is not present in all 
W3C recommendations and that the document engineering community appreciates.
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